
Closing the Uniformity Gap: High-Fidelity

Combinatorial Optimization on FPGA Edge Constraints

Drift Systems Inc. Research Division

December 2025

Abstract

Combinatorial optimization on the edge (e.g., drone
path planning, IoT routing) is constrained by the qual-
ity of available entropy. While CPU-based solvers
utilize high-fidelity PRNGs (Mersenne Twister) to
achieve uniform search coverage, low-power FPGAs
typically rely on Linear Feedback Shift Registers (LF-
SRs), which suffer from structural biases and ”spec-
tral holes.” We present Drift Annealing, a hardware
solver driven by the chaotic arithmetic of the Conway
(3n + 1) map. Benchmarks on the Traveling Sales-
man Problem (N = 196) demonstrate that the Drift
Core achieves 1.00x Efficiency Parity with FPU-
based solvers, filling the ”Uniformity Gap” left by LF-
SRs while occupying <700 logic gates. This enables
desktop-class optimization performance on constrained
silicon.

1 Introduction

Simulated Annealing (SA) is a standard heuristic for
finding global optima in NP-Hard landscapes. The al-
gorithm’s success relies heavily on the ergodicity of the
transition operator—the guarantee that the solver can
access any point in the solution space with non-zero
probability.
Standard workstations provide this via computation-
ally expensive generators like MT19937. However, em-
bedded systems often substitute these with LFSRs to
save silicon, introducing subtle correlations that trap
solvers in local minima.

2 The Uniformity Gap

We define the ”Uniformity Gap” as the divergence be-
tween an ideal uniform distribution and the actual out-
put of a hardware entropy source.
In a topological modification (e.g., 2-Opt), the solver
must select a segment length L to reverse. Our anal-
ysis of optimal trajectories shows that the demand for
L is perfectly uniform across the spectrum:

P (Lsuccess) ≈ Uniform(1, N) (1)

LFSRs, due to their linear recurrence relations, of-
ten undersample specific modular residues, effectively
blinding the solver to 20-30% of potential moves.

3 Methodology: Arithmetic
Chaos

We utilize the Drift Recurrence (Dt) based on the Col-
latz map to generate move coordinates:

St+1 =

{
(3St + 1)/2 if St is odd

St/2 if St is even
(2)

Unlike linear shifters, this non-linear map mixes bits
through carry propagation, destroying lattice struc-
tures.

3.1 Spectral Analysis

We compared the output distribution of the Drift Core
against a standard 16-bit LFSR using a ”Bucket Test”
(N = 105 samples into 20 bins).

• LFSR: Exhibited ”Ripples” with a Chi-Square
deviation of χ2 > 15.4, indicating structural bias.

• Drift Core: Achieved a near-perfect flat distri-
bution (χ2 < 0.9), statistically indistinguishable
from the Mersenne Twister.

4 Experimental Results

We benchmarked three configurations on a 14x14 Grid
TSP (a landscape prone to local minima).

4.1 Efficiency Parity

Efficiency is measured as the ratio of Successful Moves
to Attempted Moves per bucket.

Bucket Demand (Wins) Drift Supply
Micro (1-10) 10.4% 10.3% (1.01x)
Short (11-30) 18.7% 18.6% (1.00x)
Global (>100) 23.4% 23.8% (0.99x)

Table 1: The Drift Core matches the problem’s de-
mand curve with 99% fidelity.

1



4.2 Resource Utilization

Crucially, Drift achieves this parity without an FPU
or large state memory.

• MT19937 (Software): Requires 2.5KB state +
ALU cycles.

• Drift (Hardware): Requires 128-bit register +
Adder (686 Logic Cells).

5 Conclusion

The ”Heavy-Tail” hypothesis for chaotic annealing is
unnecessary. The primary value of Arithmetic Dynam-
ics in optimization is Spectral Purity at Low Cost.
By replacing biased LFSRs with the Drift Core, edge
devices can close the Uniformity Gap, solving NP-Hard
problems with the same efficacy as high-power work-
stations.

2


