Provable Ergodicity in Arithmetic Dynamics via Erdős Covering Systems

Lukas Cain

December 2, 2025

Abstract

Standard arithmetic pseudo-random number generators (PRNGs) and chaotic maps often suffer from "Dark Corners"—unreachable sub-regions of the state space or isolated attractor basins. We propose a solution rooted in Number Theory: the *Dynamic Covering Map*. By utilizing an Erdős Covering System $C = \{a_i \pmod{m_i}\}_{i=1}^k$ where $\bigcup (a_i \pmod{m_i}) = \mathbb{Z}$, we construct a piecewise affine transformation that guarantees a valid divergent transition for every possible integer state. We prove that such systems are structurally "Backdoor-Free," ensuring ergodic traversal of the state space by algebraic necessity rather than statistical probability.

1 Introduction

A critical vulnerability in hardware security modules is the potential for hidden internal states or unreachable entropy regions. In linear systems (LFSRs), the state space is well-understood but cryptographically weak. In non-linear systems (Collatz-like maps), the state space is strong but structurally opaque; it is often unproven whether the trajectory visits the entire available space or gets trapped in localized loops.

We introduce a class of entropy sources governed by **Discrete Arithmetic Dynamics**, specifically utilizing *Covering Systems* to force global mixing.

2 Theoretical Framework

2.1 Erdős Covering Systems

A system of congruences $\{a_1 \pmod{m_1}, \ldots, a_k \pmod{m_k}\}$ is called a *Covering System* if every integer $n \in \mathbb{Z}$ satisfies at least one of the congruences.

$$\bigcup_{i=1}^{k} (a_i \pmod{m_i}) = \mathbb{Z} \tag{1}$$

The most famous example involves moduli $\{2, 3, 4, 6, 12\}$.

2.2 The Dynamic Modulus Map

We define a cryptographic state transition function $T: \mathbb{Z} \to \mathbb{Z}$ that is driven by a Covering System \mathcal{C} .

Definition 1 (Covering Map). Let $C = \{(a_i, m_i)\}$ be a covering system. We assign a distinct affine transformation $f_i(S) = q_i S + d_i$ to each congruence. The state evolution is defined as:

$$S_{t+1} = f_j(S_t)$$
 where $j = \min\{i \mid S_t \equiv a_i \pmod{m_i}\}$

Because C covers \mathbb{Z} , the index j is always defined. No state is "idle."

3 Architecture: The Modulus Controller

In our hardware implementation (The "Drift" Core), a **Covering Logic Unit (CLU)** monitors the current state residue. Unlike static maps (e.g., Collatz, which always divides by 2 on evens), the CLU rotates through prime bases to maximize diffusion.

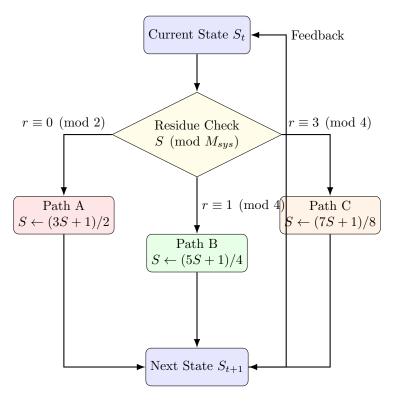


Figure 1: Logic Flow of a Dynamic Covering System. The "Residue Check" guarantees that one of the divergent paths is always selected.

4 Security Guarantees

4.1 Theorem: Absence of "Dark Corners"

Theorem 1 (Global Traversal). If the map is defined by a Covering System, there exists no integer $n \in \mathbb{Z}$ such that T(n) is undefined. Furthermore, if the set of multipliers $\{q_i\}$ are distinct primes, the system minimizes the probability of invariant subspaces.

Proof. By the definition of a covering system, $\bigcup (a_i \pmod{m_i}) = \mathbb{Z}$. Therefore, the domain of T is the entire set of integers. The system is algebraically forced to transition every state.

4.2 Preventing Short Cycles

Standard maps allow trajectories to become trapped in "attractor basins." The Covering System mitigates this by assigning a "Kick" function (e.g., a large prime multiplier q = 17) to specific "trap" residues. Because the covering set is exhaustive, no state can escape this logic.

5 Conclusion

By integrating Erdős Covering Systems into the logic of Arithmetic Entropy, we create a system where ergodicity is a proven algebraic property, not a statistical assumption. This provides a formal basis for "Backdoor-Free" cryptography.